

Airborne Separation in Advanced En-Route ATM

Rosa Weber April 18, 2008

Presented to the AP-23 Working Group

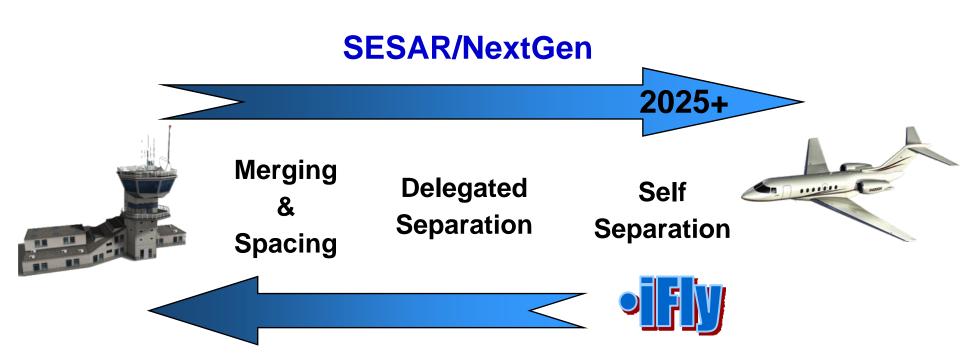
Project Consortium

- National Aerospace Laboratory (NLR)
- 🔸 Honeywell 🛌
- 🔸 Isdefe 🚾
- + University of Tartu 💻
- Athens University of Economics
 And Business
- ✦ Eidgenossische Technische Hochschule Zurich
- + University of l'Aquila
- + Politecnico di Milano
- + University of Cambridge 💥

- National Technical University of Athens Image
- + University of Twente
- Ecole National de l'Aviation
 Civile
- 🔸 Dedale 🚺
- 🔸 UK NATS En Route Ltd. 🎇
- Institut National de Recherche en Informatique et en Automatique
- + Eurocontrol EEC
- + DSNA-DTI-SDER
- + University of Leicester 💥

iFly Objectives

Honeywell



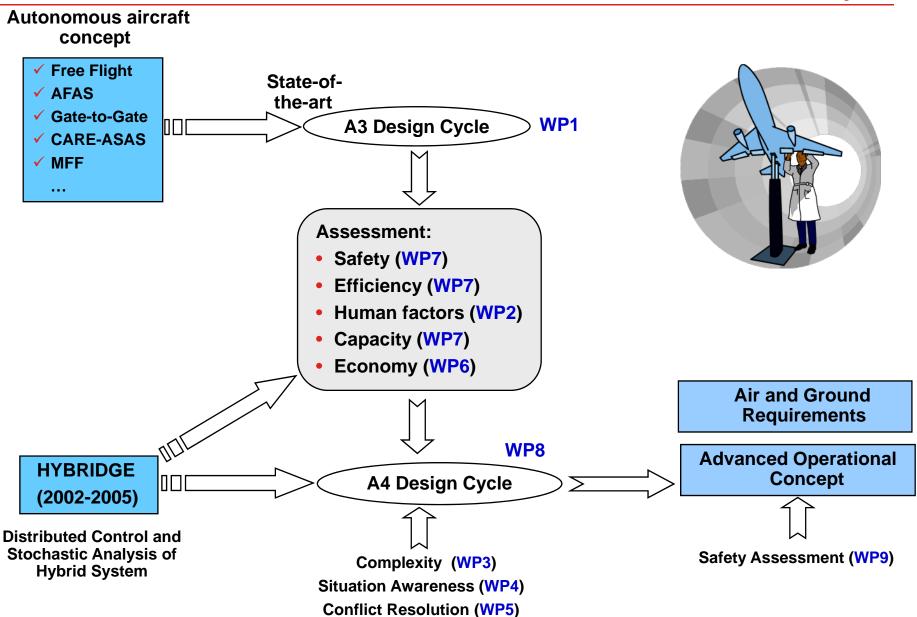
Key design aspects:

- Human responsibilities
- Traffic Complexity
- Safety Assessment using SESAR compliant safety targets

Airborne Separation in Future ATM

iFly's Scope:

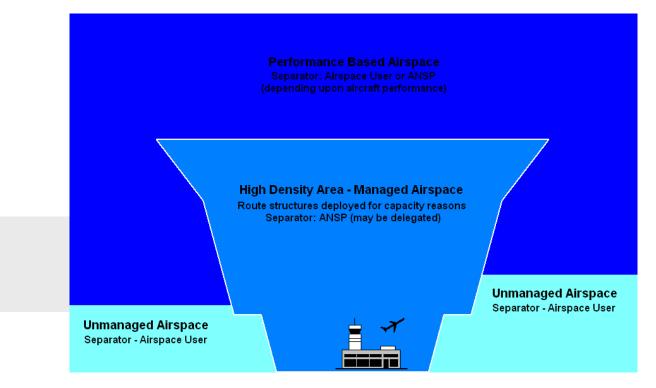
- High Density Traffic
- Only Self Separation Capable Aircraft


Honeywell

Two Design Cycles To Answer Two Main Research Questions:

- Up to which en route traffic demands is (pure) Self Separation sufficiently safe? (A³ design cycle)
- Which complementary support services from ground ATM are needed in order to accommodate higher traffic demands ? (A⁴ design cycle)
 - ✤ A⁴ = ATM-supported Autonomous Aircraft Advanced concept

iFly Project Structure



Honeywell

A3 Design Cycle

iFLY ConOps Assumptions

- Autonomous Flight Rules (AFR) operations within Performance Based Airspace (PBA)
- Fully equipped Self Separation-capable aircraft considered only
 - FMS, ASAS, ACAS, Cockpit Display of Traffic Information (CDTI), Communications Management Unit (CMU) able to communicate with SWIM and other aircraft via datalink (at least ADS-B In/Out).
- En-route phase of flight
- Flight level structure not adhered to during AFR operations.
- Self Separation trajectories end at RTA in BT.
- No ATC ground support.

Honeywell

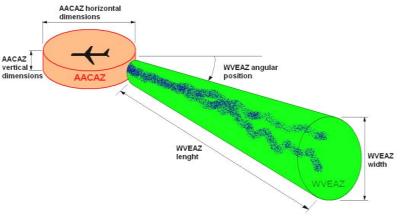
AC Separation

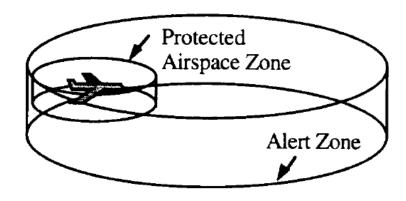
Honeywell

Protected Airspace Zone (PAZ)

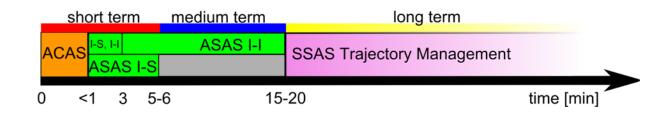
- Legal separation requirement.
- Should not be penetrated to ensure safety
- Dynamic PAZ with two real-time changing zones
 - Aircraft Aircraft Conflict Avoidance Zone (AACAZ)
 - Wake Vortex Encounter Avoidance Zone (WVEAZ)

Alert Zone (AZ)


- When penetrated triggers an intervention by ATC.
- May represent resolution zone for conflict resolution.


Separation minima suitable for Autonomous Flight to be determined

- RNP-1 capable AC enable reduction to 3NM
- Dynamic PAZ may include Aircraft Conflict Avoidance Zone (AACAZ) and Wake Vortex Encounter Avoidance Zone (WVEAZ)

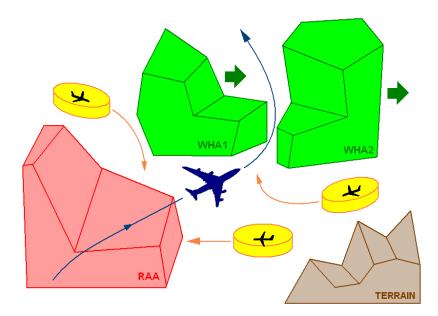

Conflict situations: aircraft PAZ enters

- A Restricted Airspace Area (RAA)
- A Weather Hazard Area (WHA)
- A Terrain/Obstacle restriction
- Another aircraft's PAZ.

Flow & Trajectory & Management

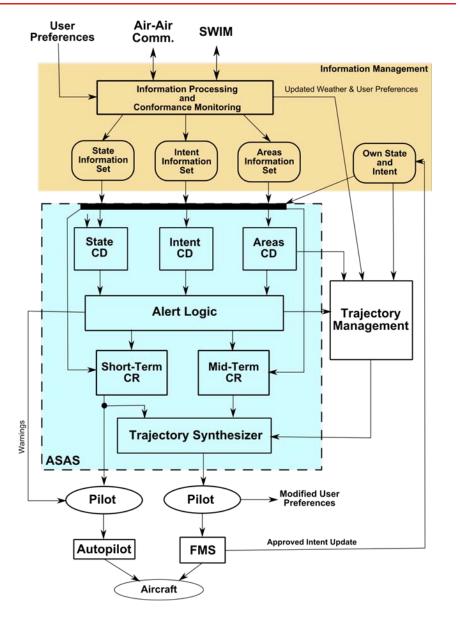
- Strategic Flow Management provided to AC
 - **1.** Ensure traffic complexity and density within safety and capacity limits
 - 2. Provide Transition Operations between IFR and AFR
 - **3.** Provide Support Services for aircraft to achieve adequate Situation Awareness.
 - Uplink RBT, meteo & hazard data, traffic congestion, special use airspace.

Trajectory Management


- Generates optimal path across PBA, incl. Strategic deconfliction
- FMS best suited for integrated airborne trajectory management within AFR ops.
- TM trajectory modifications should only affect flight > 20 minutes ahead, otherwise might interfere with ASAS actions.

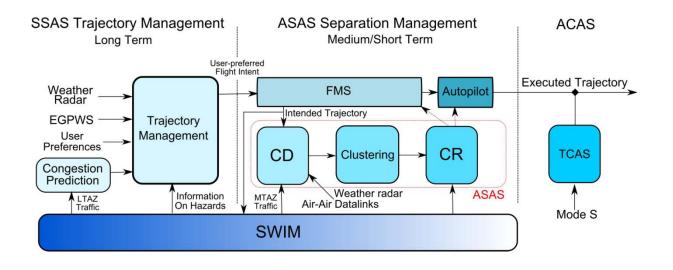
Functional System Architecture

Honeywell


Areas information data set – (weather, congested airspace, ...)

- Ground-air SWIM updates
- Onboard systems (Wx radar, EGPWS)

Trajectory Synthesizer


- Ensures that trajectory changes result into new consistent (complete) conflict free BT incl. AFR exit condition
- Inserts revised BT into FMS

iFLY Program

Main Research Areas

- Safety simulations (rare event modelling)
- Human factors
- Complexity metrics and prediction
- Situation awareness & modelling of complex hybrid systems
- Conflict resolution methods

Safety Validation

- National Aerospace Laboratory (NLR) & Honeywell
- **1. Hazard Identification**

Honeywell

2. Safety Assessment – Rare event modelling based on the Hybridge project (TOPAZ)

Complex System Modelling – Piecewise Deterministic Markov Processes represented by Dynamically Coloured Petri Nets

Air Traffic Simulation – Sequential Monte Carlo Methods

3. RTCA/Eurocae ED78a Safety Assessment

Human factors

Honeywell

Two Essential Tasks:

+ University of Tartu

- **1.** Provide Input To Both Design Cycles
- 2. Analyze and Identify Bottlenecks of Designed Systems and Propose Solutions

Main Issues

- Analysis of pilots en-route tasks
- Cockpit crew responsibility analysis
- Pilot's workload studies
- Situation awareness maintenance
- Identification of bottlenecks

Conflict Resolution

Three iFly teams address 3 CR strategies

- Long Term CR (one hour or beyond)
 - Eidgenossische Technische Hochschule Zurich
 - Both centralized (ground-based) and distributed methods
- Mid Term CR (tens of minutes)
 - University of Cambridge
 - Distributed methods, questions of suitable intent information
- Short Term CR (minutes)
 - National Technical University of Athens
 - Distributed methods, interface with TCAS

Main Issues

- Choice of suitable CR maneuvers
 - E.g., Geometrical CR algorithms well suited for implicit coordination.
- Coordination of CR maneuvers between conflicting aircraft
- TP uncertainty handling
- Conflict of multiple aircraft (clustering)
- Optimization (selection) criteria

Situation Awareness & Hybrid Systems

Honeywell

+ University of l'Aquila

Two parallel approaches:

Vs.

Conventional

Theoretical (formal)

Based on the expert assessment and subsequently validated – used in both design cycles.

Based on complex hybrid system modelling and

subsequent analysis of critical observability.

Some Questions of Interest

- WHAT ARE THE MOST SUITABLE CR ALGORITHM(S) FOR ASAS OPERATIONS?
- SHOULD CR MANOEUVRES BE CONSIDERED SEPARATELY IN THE VERTICAL AND HORIZONTAL PLANES?
- SHOULD THE CR ALGORITHMS BE PART OF THE FMS, TCAS OR AN INDEPENDENT BOX?
- WHAT ARE THE CHANGES NECESSARY IN CURRENT AVIONIC SYSTEMS (ESP. FMS) TO ENSURE AUTONOMOUS FLIGHT TRAJECTORY MANAGEMENT?
- HOW CAN AIR TRAFFIC COMPLEXITY FOR AIRBORNE SELF SEPARATION BE DEFINED?
- WHICH INFORMATION MUST BE PROVIDED TO THE AIRCREW TO ENSURE HIGH SITUATION AWARENESS?
- HOW MANY CR ADVISORIES SHOULD BE PROVIDED TO THE PILOT?
- HOW SHOULD THE ASAS-TCAS INTERFACE BE DESIGNED TO ENSURE THE CONTINUATION OF CR ADVISORIES?
- HOW SHOULD PAZ FOR AIRBORNE SELF SEPARATION BE DEFINED ?
- WHAT BENEFITS WOULD REDUCED SEPARATION STANDARDS BRING?

In Conclusion

• iFLY Progress to Date

- Completed first phase of (A3) design cycle and state-of-the-art research.

Submitted Deliverables

- WP1.1: Autonomous Aircraft Advanced (A3) High Level ConOps
- WP2.1: Description of airborne human responsibilities in autonomous aircraft operations
- WP3.1: Complexity metrics applicable to autonomous aircraft
- WP4.1: Hybrid models and critical observer synthesis for multi-agent situation awareness
- WP5.1: Comparative Study of Conflict Resolution Methods
- WP7.1: Accident risk and flight efficiency of A3 operation Scoping and safety target -
- Upcoming Meeting
 - 2nd PMC: May 28-29, 2008, Tartu, Estonia

Web site: <u>http://iFLY.nlr.nl</u> Coordinator: Henk Blom (NLR)

